[Comparison Table of Lasers]

	YAG Laser	Fiber Laser	Femtosecond Laser
Laser source	YAG crystal	optical fiber	mode locking laser
Processing method	Heat conducting processing:	Key hole processing:	Non-heating processing:
	Laser energy absorbed on the	Multiple reflection of laser in a key	The laser beam evaporates just a
	surface conducts into a depth	hole, made by evaporation of the	laser condensing spot area
	direction.	laser condensing point, enables to	instantaneously so that the heat
		make a deep hole.	gives minimum effects to the
			material.
Welding capability	Excellent:	Good:	Inapplicable:
	Spot welding is available at low	It is suitable for deep and narrow	basically impossible
	cost and high power.	welding at high speed.	
Subtractive process (cutting, drilling etc.)	Inapplicable:	Good:	Excellent:
	basically impossible	It can remove a large volume of a	It removes a small volume of a work
		work at one time, but the finished	at one time in a high quality,
		quality is sometimes poor.	requiring a longer time for removing
			a volume of work.
Pulse width	microseconds to milliseconds	microseconds to continuous wave	femtoseconds to picoseconds
Total output power	Middle:	High:	Low:
	high peak power	Continuous processing with a high	ultrashort pulse with a high peak
		power is available.	power
Dross or Deposited		Dross adhesion:	Dross-free:
	(only welding is available)	Finishing work is required for	(Dusts can be easily washed out.)
		removing dross.	
Productivity	Middle	High	Low

[Features of Femtosecond Laser]

Ultrashort pulse laser	One femtosecond is one petasecond, 10^{-15} second. (Light can travel only 0.3 µm in one femtosecond.)		
Minimum thermal effect to materials	Much smaller denaturized areas is provided to the vicinity of a processed point due to the less heat effects. Resins can be processed as well as metals. Materials weak to heat, e.g. one having a low melting point, are especially suitable to be processed.		
High precision work	Transparent materials, even only inner parts of them, can be processed. Ultrashort pulse laser beam, having a strong electric field with compressed energy in time and space, causes non-linear interactions, such as multiphoton absorption and multiphoton ionization, only on a beam condensing spot.		
Less damages to vicinity	Less chippings or cracks are given. Femtosecond laser process can be well employed for hard-to-cut materials, such as ceramics and composite materials, because it minimizes the damages to the vicinity of the processed area.		
Processing capability to high-band-gap materials	Femtosecond laser process can be well employed for high-band-gap materials, e.g. glass or particular polymers, because the ultrashort pulse laser absorbs a large number of multiphotons. Transparent materials are processed from the bottom side, and the higher transparency gives higher productivity.		